Schluss von Einheit auf die Mehrheit

Wir kennen hier den Preis von einem Stück.

wir wollen den Preis von mehreren Stücken ausrechnen!


Hier ein Beispiel

Eine Dose Red Bull kostet 1,99 €, wie viel kosten 8 Dosen Red Bull?

Also zuerst: Je mehr Drinks ich kaufe, desto mehr Geld muss ich bezahlen.

Ist klar! Das ist wieder ein direktes Verhältnis.

Wir können das wieder in einer Tabelle darstellen.

Schauen wir uns das in der Tabelle an:

Wir machen Spalten mit den Werten, die wir kennen.

Mit diesen können wir auch gut rechnen.

Für die Unbekannte (in unserem Fall für die Anzahl der Euros, die 8 Dosen kosten) verwenden wir ein x.


8 Dosen Red Bull sind das Achtfache von einer Dose.

Damit wir jetzt von 1 Dose Red Bull auf 8 Dosen Red Bull kommen, müssen wir die 1 mit 8 multiplizieren.

Der Preis muss auch mit 8 multipliziert werden.


Noch ein Beispiel

 Ein Mango kostet 2 Euro. Wie viel kosten 5 Mangos?

Wenn 1 Mango 2 Euro kostet, dann kann ich daraus schließen, dass 5 Mangos 10 Euro kosten.

Ist ja ganz einfach, man muss ja nur die 2 Euro mal 5 rechnen!

Schauen wir uns das wieder in einer Tabelle an.

Warum heißt es direktes Verhältnis? Ganz leicht.

Wir tragen jetzt die Stückzahl der Mangos links ein.

Den Preis tragen wir rechts ein.

Die Anzahl der Mangos und der Preis stehen in einem direkten Verhältnis.

Preis und Anzahl sind direkt proportional.

Das heißt, je mehr Mangos, desto mehr Euros muss ich bezahlen!


Wenn ich also weiß, wie viel ein Mango kostet, kann ich leicht ausrechnen, wie viel 5 Mangos kosten.

Damit ich von 1 Mango auf 5 Mangos komme, muss ich mit 5 multiplizieren.

Ich muss aber auch die Euros mit 5 multiplizieren.

Was ich auf der einen Seite der Tabelle mache, muss ich auch auf der anderen Seite der Tabelle machen.


Sehen wir uns das Verhältnis von den Mangos zum Preis (Euro) an. Der Preis ist in unserem Beispiel immer doppelt so groß wie die Anzahl der Mangos!

Wenn ich 1 Mango habe, zahle ich 2 €.

Wenn ich 2 Mangos habe, zahle ich 4 €.

Wenn ich 3 Mangos habe, zahle ich 6 €, usw.

 

Das Verhältnis Mangos zu Euros (Mangos : Euro) bleibt immer eins zu zwei (1 : 2).

Pro Mango doppelt so viele Euros.


Im Beispiel mit den Mangos wissen wir, wie viel 1 Stück (= die Einheit) kostet.

Wir wollen wissen, wie viel mehrere Stück (die Mehrheit) kosten.

Wir sagen: wir schließen von der Einheit auf die Mehrheit.